1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
| from pwn import * from sage.all import * import ast from Crypto.Util.number import bytes_to_long, long_to_bytes import sys sys.path.append('./MT19937-Symbolic-Execution-and-Solver-master/source') from MT19937 import MT19937, MT19937_symbolic from tqdm import trange import itertools
context.log_level = 'error'
def main(): r = process(['sage', 'task.sage']) r.recvuntil(b'p =') p = int(r.recvline().strip())
from sage.parallel.multiprocessing_sage import pyprocessing
def find_ab_worker(*args): p, attempts = args import random for _ in range(attempts): a = random.randint(1, p-1) b = random.randint(1, p-1) try: E1 = EllipticCurve(Zmod(p), [a, b]) E2 = EllipticCurve(Zmod(p), [a+b, a-b]) E1o = E1.order() E2o = E2.order() except: continue m1 = prod(list(filter(lambda x: x < 2 ** 32, (base ** exp for base, exp in factor(E1o))))) m2 = prod(list(filter(lambda x: x < 2 ** 32, (base ** exp for base, exp in factor(E2o))))) ml1 = m1.bit_length() ml2 = m2.bit_length() if ml1 > 40 and ml2 > 40 and (ml1 + ml2) > 120: return (a, b) return None
def find_ab(p, processes=20, batch_size=2): parallel_iter = pyprocessing(processes) P = parallel(p_iter=parallel_iter) while True: inputs = [((p, batch_size), {}) for _ in range(processes) ] results = list(P(find_ab_worker)(inputs)) for res in results: if res[1] is not None: return res[1]
a, b = find_ab(p) r.sendlineafter(b'a =', str(a).encode()) r.sendlineafter(b'b =', str(b).encode())
r.recvuntil(b'A =') A_data = r.recvline().strip().decode() AP, AQ = ast.literal_eval(A_data)
r.recvuntil(b'enc =') enc_data = r.recvline().strip().decode() enc_points = ast.literal_eval(enc_data)
P_xy, Q_xy, encP_xy, encQ_xy = enc_points
E1 = EllipticCurve(GF(p), [a, b]) E2 = EllipticCurve(GF(p), [a+b, a-b])
P = E1(*P_xy) Q = E2(*Q_xy) encP = E1(*encP_xy) encQ = E2(*encQ_xy)
known = AP + AQ[:45]
data = [] for i in known: for _ in range(5): data.append(i & 2**32-1) i >>= 32 data = data[:624] try: rng = MT19937(state_from_data = (data, 32)) except: r.close() return None for tryrev in trange(80, 300): rng = MT19937(state_from_data = (data, 32)) rng.reverse_states(tryrev) m_list = [rng() >> 30 for _ in range(tryrev)] s = [] for i in m_list: if i <= 1: s.append(i) if len(s) == 80: break
E1o = E1.order() E2o = E2.order()
def dl(Q, P, n, filnum): primes = list(filter(lambda x: x < 2 ** 32 and gcd(x, filnum) == 1, (base ** exp for base, exp in factor(n))))
dlogs = [] for fac in primes: t = int(n) // int(fac) dlog = discrete_log(t*Q,t*P,operation="+") dlogs.append(dlog) k = int(crt(dlogs,primes)) return k, prod(primes) sAP = sum([s[i]*AP[i] for i in range(80)]) sAQ = sum([s[i]*AQ[i] for i in range(80)])
sum_AP, modA = dl(encP, P, E1o, sAP) sum_AQ, modB = dl(encQ, Q, E2o, sAQ)
mA = sum_AP * pow(sAP, -1, modA) % modA mB = sum_AQ * pow(sAQ, -1, modB) % modB
try: m = crt([mA, mB], [modA, modB]) return m, lcm(modA, modB) except: print('FUCK') return (mA, modA) if modA > modB else (mB, modB)
if __name__ == '__main__': flags = [] modulos = [] for _ in trange(1000): res = main() if res is not None: if res[0] is not None and res[1] is not None: flags.append(int(res[0])) modulos.append(int(res[1])) print("flags =", flags) print("modulos =", modulos) lst = list(zip(flags, modulos)) result = [] for i in range(2, len(lst)+1): for combo in itertools.combinations(lst, i): result.append(list(combo)) for combo in result: f, m = map(list, zip(*combo)) try: flag = long_to_bytes(crt(f, m)) if flag.startswith(b'flag'): print(flag) exit() except Exception as e: pass
|